Search results for "Compressed data structures"
showing 4 items of 4 documents
Block Sorting-Based Transformations on Words: Beyond the Magic BWT
2018
The Burrows-Wheeler Transform (BWT) is a word transformation introduced in 1994 for Data Compression and later results have contributed to make it a fundamental tool for the design of self-indexing compressed data structures. The Alternating Burrows-Wheeler Transform (ABWT) is a more recent transformation, studied in the context of Combinatorics on Words, that works in a similar way, using an alternating lexicographical order instead of the usual one. In this paper we study a more general class of block sorting-based transformations. The transformations in this new class prove to be interesting combinatorial tools that offer new research perspectives. In particular, we show that all the tra…
Novel Results on the Number of Runs of the Burrows-Wheeler-Transform
2021
The Burrows-Wheeler-Transform (BWT), a reversible string transformation, is one of the fundamental components of many current data structures in string processing. It is central in data compression, as well as in efficient query algorithms for sequence data, such as webpages, genomic and other biological sequences, or indeed any textual data. The BWT lends itself well to compression because its number of equal-letter-runs (usually referred to as $r$) is often considerably lower than that of the original string; in particular, it is well suited for strings with many repeated factors. In fact, much attention has been paid to the $r$ parameter as measure of repetitiveness, especially to evalua…
Repetitiveness Measures based on String Attractors and Burrows-Wheeler Transform: Properties and Applications
2023
Alignment-free Genomic Analysis via a Big Data Spark Platform
2021
Abstract Motivation Alignment-free distance and similarity functions (AF functions, for short) are a well-established alternative to pairwise and multiple sequence alignments for many genomic, metagenomic and epigenomic tasks. Due to data-intensive applications, the computation of AF functions is a Big Data problem, with the recent literature indicating that the development of fast and scalable algorithms computing AF functions is a high-priority task. Somewhat surprisingly, despite the increasing popularity of Big Data technologies in computational biology, the development of a Big Data platform for those tasks has not been pursued, possibly due to its complexity. Results We fill this impo…